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Abstract. 28 

The spaceborne Advanced Very High Resolution Radiometer (AVHRR) sensor data record is 29 

approaching 40 years, providing a crucial asset for studying long-term trends of aerosol 30 

properties regionally and globally. However, due to limitations of its channels’ information 31 

content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In 32 

this paper, we describe a new physics-based algorithm to retrieve aerosol loading over both land 33 

and ocean from AVHRR for the first time. The over-land algorithm is an extension of our Sea-34 

viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging 35 

Spectroradiometer (MODIS) Deep Blue algorithm, while a simplified version of our Satellite 36 

Ocean Aerosol Retrieval (SOAR) algorithm is used over ocean. We compare retrieved AVHRR 37 

AOD with that from MODIS on a daily and seasonal basis, and find in general good agreement 38 

between the two. For the satellites with equatorial crossing times within two hours of solar noon, 39 

the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over 40 

very bright arid regions (such as the Sahara), where the underlying surface reflectance at 630 nm 41 

reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against 42 

Aerosol Robotic Network (AERONET) data, preliminary results indicate that the expected error 43 

confidence interval envelope is around ±(0.03+15%) over ocean and ±(0.05+25%) over land for 44 

this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol 45 

products can contribute important building blocks for constructing a consistent long-term data 46 

record for climate studies.  47 

48 
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1. Introduction 49 

 50 

Success in the quest of quantifying anthropogenic impacts on global change accurately 51 

requires decades-long observations of atmospheric, oceanic, and land imaging from space. 52 

Analyses of the longest (nearly 40-year) daily record of imager data acquired by the Advanced 53 

Very High Resolution Radiometer (AVHRR) aboard the National Oceanic and Atmospheric 54 

Administration (NOAA) polar-orbiting meteorological satellites can contribute important 55 

building blocks toward this quest. The unique series of AVHRR measurements can be obtained 56 

from NOAA-7 (launched in 1981) to NOAA-19 (launched in 2009), comprised of data mainly 57 

from two different sensors: the AVHRR/2 instrument that spans from July 1981 to November 58 

2000, followed by the AVHRR/3 to the present. To retrieve aerosol properties from both natural 59 

and anthropogenic sources, over both land and ocean, we need to first examine the mechanical, 60 

optical, and radiometric characteristics of the AVHRR sensors. These are discussed below.  61 

AVHRR scans mechanically with ±55
o
 from nadir and covers a swath width of 2,800 km.  62 

Although the native spatial resolution in local area coverage (LAC) mode is 1.1 km at the sub-63 

satellite point, the actual pixel size and shape are somewhat dependent on scan angle. The LAC 64 

data are resampled at ~4 km spatial resolution to give a global area coverage (GAC) data set. 65 

Within each block of three across-track scan lines by five pixels along-track of LAC pixels, the 66 

first four pixels in the first scan line are averaged and the other eleven pixels are skipped. Thus, 67 

the AVHRR GAC data are a 4/15 partial sampling of every three by five pixel block, and fifteen 68 

being close to the square of four, are often referred to as ‘4 km’ data. The GAC record for a 24-69 

hour period (day and night) totals 0.6 GB, a large volume in the late 1970s but trivial today 70 

(Kidwell, 1997).  71 
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To fuel the mechanical complexity further, those satellites from NOAA-7 in July 1981 to 72 

NOAA-14 in 2000 were permitted to drift in orbit, where the drift or precession was two to three 73 

minutes per month in terms of later equatorial crossing times, in turn, introducing artifacts in 74 

AVHRR data (Kaufman et al., 2000; Tucker et al., 2005). Our previous results also indicate that 75 

this orbital drift imposes significant challenges in determining trends of aerosol loading over 76 

land and ocean due to changes in sampling spatial coverage with time (Hsu et al., 2012). Orbital 77 

drift was greatly minimized after the launch of NOAA-16 in 2000, and the viewing geometry 78 

information for these later sensors is provided within the Level 1 (L1B) input files. Thus, for 79 

processing the pre-NOAA K/L/M (or prior to NOAA-15) AVHRR data, we need to calculate the 80 

sun-target-sensor geometries directly from the orbital elements of the satellites. The orbital 81 

elements, including eccentricity, semi-major axis, inclination, location of ascending node, 82 

argument of periapsis, and the anomaly, are obtained from the Two-Line-Elements satellite 83 

attitude data source provided by the North American Aerospace Defense Command (cf. 84 

https://www.celestrak.com/NORAD/documentation/tle-fmt.asp). 85 

The first AVHRR was equipped with four optical channels and was launched in October 86 

1978 on TIROS-N. Subsequently, the sensor was improved to a 5-channel instrument 87 

(AVHRR/2, NOAA-7 through 14) and, for the most recent, 6-channel (AVHRR/3, NOAA-15 88 

through 19). These bands are listed in Table 1, and their strengths and limitations for aerosol 89 

remote sensing are well-established (cf. Tanré et al., 1992; Mischenko et al., 1999 for detailed 90 

discussions). In brief, with only two overlapping spectral bands available on most sensors 91 

(channels 1 and 2 centered near 630 and 850 nm, cf. Figure 1, Table 1), the ability to infer 92 

aerosol type is very limited. The spectral width of channel 2 in particular is problematic, since it 93 

is a broad band which covers water vapor absorption lines, meaning that ancillary information 94 

https://www.celestrak.com/NORAD/documentation/tle-fmt.asp
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about column water vapor content is required to make quantitative use of this band. The 95 

AVHRR/3 sensors included a third solar band near 1.6 µm (channel 3a), which improves 96 

fine/coarse aerosol discrimination, although this band was inactive on many AVHRR sensors 97 

(either the 1.6 µm or 3.7 µm channels were in operation, not both simultaneously), and as such is 98 

not considered further at the present time to improve sensor-to-sensor consistency. AVHRR/3 99 

also had the advantage that channels 1 and 2 were narrower and did not significantly overlap 100 

compared to the spectral responses of these bands on AVHRR/2 instruments (cf. Figure 1). 101 

Differences between the sensors’ spectral response functions make the task of achieving multi-102 

sensor consistency less straightforward. The remaining three bands (channels 3b, 4, and 5), 103 

centered near 3.7, 11, and 12 µm, are more similar between the AVHRR/2 and AVHRR/3 series 104 

sensors, and are of great utility for applications such as surface/cloud temperature monitoring 105 

and detection of thermally-active aerosols (e.g., mineral dust, volcanic ash). Since AVHRR/1 on 106 

TIROS-N and NOAA-6 has only 4 channels and lacks the 12 µm band, which is needed for our 107 

Deep Blue algorithm, AVHRR measurements before the year 1981 will not be considered. 108 

Despite these limitations, AVHRR data have been used for retrieving aerosol optical 109 

depth (AOD) by various groups. Most AOD data sets created from AVHRR measurements are 110 

over-water only, since water surface reflectance in this spectral region is low and can be modeled 111 

with reasonable accuracy as a function of near-surface wind speed. One-channel algorithms such 112 

as described in Rao et al. (1989) and Stowe et al. (1997) use the 630 nm band (avoiding the 113 

difficulties of water vapor absorption in channel 2) but are then restricted to assuming a single 114 

aerosol optical model everywhere, which leads to type-dependent AOD biases. Two- or three-115 

channel approaches (e.g., Rao et al., 1989; Mishchenko et al., 1999; Ignatov and Stowe, 2002; 116 

Ignatov et al., 2004) permit retrieval of AOD and Ångström exponent (AE), thus providing some 117 
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indication of aerosol size, although the sensitivity to size remains small and there is essentially 118 

no sensitivity to other parameters such as aerosol absorption. Validation of earlier AVHRR data 119 

sets is limited due to the sparse availability of ground-truth data at these times, although a few, 120 

mostly regional, studies have been performed (e.g. Stowe et al. 1997, Haywood et al. 2001, Zhao 121 

et al. 2002, 2003, 2004). Other studies have focused on more statistical long-term comparisons 122 

with Sun photometers rather than instantaneous matchups (Liu et al., 2004), or on comparison of 123 

overlapping AVHRR time series to assess sensor-to-sensor consistency (Ignatov et al., 2004). 124 

Several attempts have also been made to use AVHRR to determine AOD over land, for 125 

which characterization of land surface reflectance presents a significant difficulty. Knapp and 126 

Stowe (2002) proposed a method using Aerosol Robotic Network (AERONET, Holben et al., 127 

1998) to estimate the surface reflectance in the vicinity of individual sites, and then constructing 128 

surface reflectance models as a function of land cover type. Riffler et al. (2010) take a 45-day 129 

window and essentially use a minimum reflectance technique (with an additional stratification by 130 

viewing zenith angle) to estimate surface reflectance for a given location. Mei et al. (2014) used 131 

ancillary surface information from the Moderate Resolution Imaging Spectroradiometer 132 

(MODIS) in concert with the AVHRR 3.7 µm band (which is comparatively unaffected by the 133 

presence of aerosols) and Normalized Difference Vegetation Index (NDVI, Tucker, 1979) to 134 

infer surface reflectance over China. In all cases, aerosol optical models are prescribed rather 135 

than retrieved, due to the limited information content of the measurements. More recently, 136 

synergistic use of AVHRR with other instruments on board the MetOp platforms has enabled 137 

improved retrieval of AOD over both land and ocean (EUMETSAT, 2016). The combination of 138 

sensors provides additional information content for identification of aerosol type, and 139 
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discrimination between clouds and heavy aerosols, which ameliorates some of the issues of 140 

AVHRR-only algorithms. 141 

As a result of these obstacles, it has been a highly challenging task to retrieve aerosols 142 

globally from AVHRR, particularly over land. Nevertheless, AVHRR instruments provide 143 

valuable measurements from 1981 to the present, a time series which is otherwise not available 144 

from US Earth Observing System (EOS) sensors. Based upon previous results from our Sea-145 

viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue aerosol products, we demonstrated 146 

that an algorithm based on NDVI using a pair of red and near infrared channels (e.g., 650 and 147 

865 nm, close to AVHRR channels 1 and 2) can be useful in determining surface reflectance 148 

over vegetated land when shortwave infrared channels (such as 2.1 µm) are lacking (Hsu et al., 149 

2013).  In order to take advantage of this nearly 40-year long-term time series of AVHRR 150 

records, we develop a new approach, which is a modified version of the Deep Blue algorithm, to 151 

retrieve aerosol properties from AVHRR over land and ocean with similar data structures 152 

following the convention of our SeaWiFS aerosol products. Over ocean the Satellite Ocean 153 

Aerosol Retrieval (SOAR) algorithm, which has been applied to SeaWiFS and Visible Infrared 154 

Imagining Radiometer Suite (VIIRS) measurements (Sayer et al., 2012a, 2017a), is likewise 155 

adapted for use with AVHRR to complement Deep Blue by providing coverage over water 156 

surfaces. Like SeaWiFS, as AVHRR LAC data are not available everywhere, we use the GAC 157 

data in retrieval processing for consistency between satellite platforms. 158 

Sensor radiometric calibration plays a key role in constructing long-term climate data 159 

records. This is particularly important for this study, since there is no onboard solar band 160 

calibration for AVHRR. Various approaches have been applied to characterize the absolute 161 

calibration and on-orbit degradation of the instruments. This first version of the AVHRR Deep 162 
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Blue data products uses the calibration of Vermote and Kaufman (1995), which is also used for 163 

NASA’s long-term NDVI time series data products (e.g. Tucker et al., 2005). Vermote and 164 

Kaufman (1995) provide a methodology for the absolute calibration of AVHRR bands 1 and 2, 165 

which is repeated through time to monitor and correct for the degradation of these bands on-166 

orbit. A first step uses views of high-altitude bright clouds as ‘white’ reference targets to provide 167 

a relative calibration between the two bands. A second step determines an absolute calibration of 168 

channel 1, using off-nadir pixels over ocean where the aerosol load is low and Rayleigh signal 169 

comparatively high. This absolute channel 1 calibration can then be transferred to channel 2 170 

using the cloud-derived relative calibration between these bands. Other methodologies have been 171 

explored (e.g., Heidinger et al., 2002; Wu et al., 2010; Bhatt et al., 2016), and the use of their 172 

calibrations will be investigated for future versions. 173 

In this paper, we describe the details of this new extension of our Deep Blue/SOAR 174 

algorithms to AVHRR. Section 2 summarizes the methodology of the over-land and over-water 175 

algorithms, and detailed changes made in each key component compared to the other 176 

applications of Deep Blue and SOAR. Section 3 illustrates the results of the daily and seasonal 177 

aerosol products generated from the new algorithms and their comparisons with those from 178 

MODIS. Finally, we show provisional validation of the new AVHRR Deep Blue products in 179 

Section 4, followed by some conclusions in Section 5. This paper focuses primarily on the 180 

discussion of retrieval algorithms, while a detailed evaluation of the AVHRR Deep Blue aerosol 181 

product performance using AERONET and other measurements is provided by a companion 182 

paper, Sayer et al. (2017b). In this study, we use data from AVHRR/2 on NOAA-14 and 183 

AVHRR/3 on NOAA-18 to demonstrate its capability of processing both older and newer 184 

AVHRR instruments, although this algorithm can be applied to other AVHRR sensors from 185 
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NOAA-7 to NOAA-19 as well. AVHRR AOD data have been processed using these algorithms 186 

for parts of the NOAA-11, NOAA-14, and NOAA-18 missions; more information, including 187 

download links, can be found at https://deepblue.gsfc.nasa.gov.    188 

 189 

2. Descriptions of AVHRR Aerosol Retrieval Algorithm 190 

To retrieve AVHRR aerosol properties over land and ocean, we employ the Vector 191 

LInearized Discrete Ordinate Radiative Transfer (VLIDORT; Spurr, 2006) radiative transfer 192 

model to compute the reflected intensity field, which is defined by   193 

          
          

    
,     (1) 194 

where R is the normalized radiance (or apparent reflectance), F0 is the extra-terrestrial solar flux, 195 

I is the radiance at the top of the atmosphere (TOA), µ is the cosine of the view zenith angle, µ0 196 

is the cosine of the solar zenith angle, and  is the relative azimuth angle between the direction of 197 

propagation of scattered radiation and the incident solar direction. This radiative transfer code 198 

includes full multiple scattering and takes into account polarization. Using VLIDORT, lookup 199 

tables (LUTs) were generated based upon the spectral response functions of a given AVHRR 200 

sensor (cf. Figure 1) for different solar/viewing geometries and underlying surface (land and 201 

ocean) boundary conditions for aerosol retrievals. 202 

However, before the retrieval, the AVHRR TOA reflectances must first be corrected for 203 

absorption by ozone, water vapor, and well-mixed gases (details described by Sayer et al., 204 

2017a). For this initial version of the data set, gas absorption coefficients from Ignatov and 205 

Stowe (2002) for NOAA-15 were used (since these values are close to average of those reported 206 

by that study for NOAA-11, -14, and -18), scaled to account for total column ozone and water 207 

vapor read in from the MERRA2 reanalysis (Bosilovich et al., 2015). In addition, for our over-208 

https://deepblue.gsfc.nasa.gov/


10 

 

water retrievals, near-surface wind speed from MERRA2 is used to take into account the effects 209 

of oceanic whitecaps and Sun-glint strength adequately, as in prior applications of SOAR (Sayer 210 

et al., 2012a, 2017a). After the gas absorption correction, the processing stream is subsequently 211 

split into land or ocean algorithm, according to the MODIS land/sea mask, to account for the 212 

underlying surface boundary conditions in the LUTs. Advantages of MERRA2 include that it is 213 

available for the whole AVHRR record, which enables consistency between processing of 214 

different AVHRR sensors, and is at a higher spatial resolution (0.625° longitude, 0.5° latitude) 215 

than some other reanalyses. 216 

 217 

2.1 Land Algorithm (Deep Blue) 218 

Similar to our SeaWiFS/MODIS algorithm, before the aerosol retrieval is performed, we 219 

first screen out the pixels contaminated by the presence of clouds. Due to the lack of the blue 220 

bands and 1.38 µm cirrus channel for AVHRR, the previous MODIS cloud screening module has 221 

been modified to account for the band differences. The schematic diagram of the AVHRR Deep 222 

Blue cloud screening scheme is depicted in Figure 2. We utilize all of the bands that are available 223 

for both AVHRR/2 and AVHRR/3 from visible to thermal infrared wavelengths to fully take 224 

advantage of the spectral information provided by the AVHRR sensor for detecting clouds. As 225 

shown in Figure 2, instead of using the 412 nm channel (available to MODIS and SeaWiFS), a 226 

spatial variability filter based on the TOA reflectance at 630 nm (R630) within a 3 × 3 pixel area 227 

is employed for AVHRR. Also, in order to account for the dynamic range of surface reflectances 228 

at 630 nm over different ecosystem types, different threshold values are applied over darker and 229 

brighter surfaces. Based upon our extensive tests, this method is robust in filtering out puffy (e.g. 230 

cumulus) clouds as well as cloud edges. Checks on brightness temperature (BT) at 11 µm 231 

(BT11) have been implemented in conjunction to BT difference (BTD) between 11 and 12 µm 232 
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(BTD11-12) tests to effectively detect high or optically-thin clouds. Finally, in order to 233 

distinguish the heavy dust plumes from clouds, we also adopt a heavy dust flag so that the 234 

processing stream will bypass the cloud screening module when this is triggered (i.e., BTD11-12 235 

< -1.5 K). These thresholds are empirical, adapted for AVHRR from our prior implementation of 236 

Deep Blue to MODIS (e.g. Hsu et al., 2013). 237 

The aerosol optical models used in our AVHRR algorithm are in general consistent with 238 

those in the MODIS and SeaWiFS Deep Blue algorithm (cf. Hsu et al., 2004, 2013 for details). 239 

However, there have been a number of changes made in our AVHRR surface reflectance 240 

determination scheme to accommodate the channel differences between AVHRR and 241 

SeaWiFS/MODIS. These changes are summarized below.  242 

2.1.1 Determination of Surface Reflectance 243 

As demonstrated in our previous results (Hsu et al., 2013), the calculation of surface 244 

reflectance plays a key role in the accuracy of the retrieved aerosol properties. Since AVHRR 245 

has limited channels compared to later, more advanced sensors such as SeaWiFS and MODIS, 246 

the previous Deep Blue surface reflectance determination scheme needs to be modified. Figure 3 247 

depicts the flowchart of our AVHRR surface reflectance estimation module. The details of each 248 

component are described as follows: 249 

 250 

2.1.1.1 Deep Blue Surface Database 251 

For urban, dry, and transitional land surfaces, similar to the SeaWiFS/MODIS 252 

applications, a database method is used for determining surface reflectance. This was compiled 253 

based upon the minimum reflectivity method at 0.1° resolution for each season using AVHRR 254 
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TOA reflectance at 630 nm (cf. Hsu et al., 2004 for details). In brief, this approach is designed to 255 

seek the minimum Rayleigh-corrected TOA reflectance for a certain period of time at each 256 

location, and uses this as a proxy for surface reflectance. In order to construct a surface database 257 

for AVHRR, we first apply various tests to filter out pixels contaminated by the presence of 258 

clouds using cloud screening scheme described above. Reflectances which pass these tests are 259 

then corrected for the contribution from molecular (Rayleigh) scattering and averaged into a 260 

daily mean for a given grid cell. Finally, the surface reflectance values in the AVHRR database 261 

are calculated by a second-order polynomial fit through the lowest 15 percentile of points in a 262 

given grid cell against the scattering angles of these observations; the scattering angle () is 263 

defined as  264 

                                    (2) 265 

where θ0, θ, and  are the solar zenith, sensor view zenith, and relative azimuth angles, 266 

respectively. These angular curve fittings of surface reflectance are performed for each NDVI 267 

group (NDVI < 0.18, 0.18 ≤ NDVI < 0.35, or NDVI ≥ 0.35) collected in the given grid cell, 268 

provided that a sufficient sample size (20 or more points) is acquired. Based on prior experience 269 

with SeaWiFS and MODIS, this approach and fit type was found to be able to accurately capture 270 

the main angular variations in surface reflectance. 271 

Figure 4 shows the derived global 630 nm surface reflectance maps for NOAA-18 272 

AVHRR, based upon five years (2006-2010) of AVHRR data, for each season using the above 273 

approach. Due to limited AVHRR channels and information content the surface database is 274 

constructed over both land and ocean in order to help identify the turbid water for the SOAR 275 

algorithm (Section 2.2). For the AVHRR over-land algorithm, the surface reflectance is 276 
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determined using the database approach over moderately bright arid and urban regions where 277 

630 nm surface reflectance is between 0.15 and 0.30 (Figure 3). As discussed in e.g. Hsu et al. 278 

(2004) and Seidel and Popp (2012), aerosol signals diminish when the surface reflectance 279 

reaches the critical surface reflectance; for the 630 nm wavelength this includes many arid and 280 

semi-arid regions, such as parts of the Sahara Desert and Arabian Peninsula, as well as snow/ice-281 

covered land. Over these types of surfaces, we cannot accurately retrieve aerosol properties using 282 

measurements from single-view satellite sensors with this wavelength. However, 630 nm surface 283 

reflectances over arid regions in China and Mongolia are not as bright as those in the Sahara and 284 

Arabian Peninsula, and are in general less than 0.30 (Figure 4). Consequently, we exclude pixels 285 

over the deserts and semi-deserts in North Africa for retrievals, but include those over dry 286 

regions in China and Mongolia where the surface reflectance at 630 nm is below the critical 287 

values and thus suitable for aerosol retrievals. Finally, if BTD11-12 is more negative than -1.5 K, 288 

AOD retrieval will be performed regardless of surface condition, since for thick dust plumes the 289 

majority of the satellite signal comes from atmosphere. Figure 5 shows the geographic regions 290 

where different approaches are used for surface reflectance. As described above the database 291 

method is used over urban, dry, or transitional land surfaces, while a NDVI method (introduced 292 

below) is used over vegetated areas.  293 

2.1.1.2 Vegetated Land Surfaces 294 

The phenological cycle of vegetation (growth and senescence) means that the reflectance 295 

of vegetated surfaces can vary rapidly, particularly compared to barren surfaces such as deserts. 296 

Therefore, it is important to determine surface reflectance at a high temporal resolution to 297 

minimize errors in AOD related to changing surface characteristics. In this regard, the AVHRRs 298 

have a weakness compared to the MODIS and VIIRS sensors, in that the latter two include 299 
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shortwave infrared (SWIR) bands, useful for estimating surface characteristics on an 300 

instantaneous basis, which AVHRR lacks.  301 

SeaWiFS has a similar limitation. However, based upon our previous SeaWiFS Deep 302 

Blue retrievals, we found that the NDVI can serve as a useful proxy to estimate surface 303 

reflectance, making it possible to instantaneously derive surface reflectance and thus AOD in 304 

both blue (490 nm) and red (670 nm) bands (Hsu et al., 2013; Sayer et al., 2012b). Although the 305 

670 nm AOD showed an AOD-dependent underestimation, the 490 nm AOD, which showed 306 

negligible bias, could be used to correct the 670 nm AOD. For AVHRR, our preliminary 307 

investigations (not shown) suggested that the NDVI approach resulted in a more significant bias 308 

in 630 nm AOD than SeaWiFS. Since there is no additional band in AVHRR to correct for the 309 

bias (unlike SeaWiFS), we have developed a modified NDVI-based method to determine surface 310 

reflectance for AVHRR, which merge the use of NDVI with the concept of minimum reflectance 311 

approach used in our Deep Blue surface database construction mentioned above. 312 

Although similar to the minimum reflectance technique, this method utilizes NDVI rather 313 

than TOA reflectance when determining the ‘clean’ background condition. The Rayleigh-314 

corrected NDVI (NDVIRc) is defined as  315 

 316 

       
                   

                   
,                                  (3) 317 

 318 

where RRc,band1 and RRc,band2 are Rayleigh-corrected TOA reflectances in bands 1 (630 nm) and 2 319 

(850 nm), respectively. The use of NDVI is to avoid extra dimensions for observation geometry 320 

when deriving surface reflectance, thereby minimizing the search window. Since the surface 321 

reflectance is strongly dependent on observation geometry, the minimum reflectance only 322 

represents surface reflectance for the specific observation geometry for which the minimum 323 
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reflectance is observed. Figure 6 shows AVHRR Rayleigh-corrected TOA reflectance in band 1 324 

and NDVIRc for two consecutive orbits on a relatively clean day over the U.S. The NDVIRc 325 

exhibits a much smaller dependence on observation geometry than the Rayleigh-corrected TOA 326 

reflectance indicating that ‘clean’ conditions (i.e. cloud-free, low AOD) can be chosen by 327 

compositing only temporal samples for NDVI, in contrast to needing both temporal and angular 328 

samples for the TOA reflectance. This is because the ratio in the NDVI definition decreases the 329 

angular dependence of the signal. 330 

Consequently, the surface database is created by searching for maximum NDVI (as 331 

maximum NDVI corresponds to minimum band 1 surface reflectance) in each 30-day temporal 332 

window and 0.1° × 0.1° grid box. The dates of the maximum NDVI are also stored to interpolate 333 

(linearly) the NDVI values for the dates in between. The surface reflectance in band 1 334 

(          ) can then be calculated as 335 

 336 

           
              

              
         ,    (4) 337 

 338 

where              is the maximum NDVI stored in the database. As can be inferred from Eq. 339 

(4) the angular dependence of the 630 nm surface reflectance is described by the instantaneous 340 

850 nm TOA reflectance in this approach. Figure 7 shows the 30-day maximum NDVI database 341 

created for the year 2006 and four day of year (DOY) windows 1-30, 91-120, 181-210, and 271-342 

300, representative for boreal winter, spring, summer, and fall, respectively. The seasonal 343 

variation and spatial pattern of NDVI indicate reliability of a 30-day window. We also 344 

investigated (not shown) temporal windows between 10 and 45 days, although neither showed 345 

superior performance over the 30-day window in every aspect. Shorter temporal windows tended 346 

toward an underestimation in AOD due to the remaining aerosol signal in the NDVI database, 347 
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while longer temporal windows tended toward overestimation by choosing more densely 348 

vegetated conditions than representative for the bulk of the period. 349 

Since the NDVI database is susceptible to the residual aerosol signal on the day chosen 350 

for the database, an aerosol correction needs to be applied to the database to alleviate the 351 

aforementioned underestimation in AOD. To this end, atmospheric correction is performed for 352 

AVHRR band 1 and band 2 TOA reflectances to derive atmosphere-corrected (for both Rayleigh 353 

and aerosol contributions) NDVI, denoted NDVIAc, and compare with NDVIRc. AVHRR 354 

observations are collocated with AERONET sites over North America for the period from 2006 355 

to 2011 with a spatial window of 0.1° in latitude and longitude and a temporal window of 30 min. 356 

Then, the atmospheric contribution to TOA reflectance is removed using radiative transfer 357 

calculations utilizing the AERONET-observed spectral AOD as input. For AERONET, cloud-358 

screened and quality-assured Level 2 direct Sun measurements (Smirnov et al., 2000; Holben et 359 

al., 2006) were used, and AOD at AVHRR band 1 and 2 were derived from the spectral AOD 360 

and AE over the 440-870 nm wavelength range. The comparison between NDVIAc and NDVIRc 361 

provides useful information for the aerosol correction scheme. 362 

Figure 8 shows differences between NDVIAc and NDVIRc as a function of 550 nm AOD, 363 

NDVIRc, air mass parameter (AMP, secθo × secθv), and scattering angle, which are factors on 364 

which the aerosol signal is dependent. Also shown are the differences after applying corrections 365 

for aerosol signals described here. The NDVI differences before the corrections reveal that the 366 

aerosol contamination in the NDVIRc is strongly dependent on AOD and results in negative 367 

biases. Relatively weak dependences are also found on NDVI, AMP, and scattering angle. It 368 

should be noted that in addition to the strong dependence on AOD, the absolute difference 369 

between NDVIRc and NDVIAc generally increases with increasing NDVI and decreasing 370 
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scattering angle up to ~120°. The dependence on AMP is less significant. This is because both 371 

increasing NDVI and decreasing scattering angle enhance the aerosol signal at a given AOD, due 372 

to increasing contrast between aerosol and surface signals, and increasing aerosol scattering 373 

intensity, respectively. By the same reasoning, a dependence on AMP is also expected (due to 374 

increasing aerosol signal with air mass), but the dependence is much smaller than those of the 375 

other parameters. This is likely due to the contextual characteristics of the bias and sensitivity. 376 

Trial and error based on the median differences between NDVIRc and NDVIAc leads us to 377 

the following correction equations: 378 

For scattering angle ≥ 120°, 379 

 380 

                                       –                                                 (5) 381 

 382 

For scattering angle < 120°,  383 

 384 

                                       –                               (6) 385 

 386 

It is found that these corrections significantly improve the medians and central 68% intervals of 387 

the NDVI differences (i.e. medians closer to zero and spread of distribution smaller).  388 

In actual implementation, since ‘true’ background AOD values are not available for each 389 

location and time, a monthly AOD climatology (one value for each of the 12 calendar months, 390 

not one value for each month of the satellite record) is created using the Aqua MODIS Collection 391 

6 Deep Blue AOD product. Specifically, the 5
th

 percentiles of 13-year Level 3 daily AOD record 392 

from 2003 to 2015 in each 1° × 1° grid were chosen to represent the background AOD and used 393 

to correct the NDVI database using Eqs. (5) or (6) depending on scattering angle. It should be 394 

noted that the climatology was created in a way to correct the NDVI database a marginal amount, 395 

such that the different spatial resolution between the NDVI database (0.1°) and AOD 396 
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climatology (1°) did not generate a noticeable checkerboard pattern in the spatial distribution of 397 

AOD. Likewise, it is expected that the use of a single monthly climatology for the entire 398 

AVHRR record would not lead to significant biases. Note that this does not mean that the 399 

MODIS Deep Blue record ‘feeds in’ to the AVHRR record on an instantaneous basis, only to 400 

correct the background AOD for the NDVI database calculation as described above. Other 401 

aerosol data sets could in principle be used to create this background AOD climatology instead. 402 

In this way the actual AVHRR AOD retrieval remains largely independent of the MODIS Deep 403 

Blue AOD retrieval.  404 

The performance of the surface reflectances derived from the NDVI database is evaluated 405 

by comparing against the atmospherically-corrected TOA reflectances calculated above. Here 406 

data with 550 nm AOD from AERONET < 0.2 are only compared to minimize uncertainties in 407 

the atmospheric correction procedure. As shown in Figure 9, the NDVI database-derived surface 408 

reflectances (estimated surface reflectances) are well-correlated with the atmosphere-corrected 409 

TOA reflectances (benchmark surface reflectances) in general, showing root-mean-square error 410 

(RMSE) ranging from 1.70% to 2.67% and mean bias (MB) from -0.38% to -0.92% (excluding 411 

winter due to the small number of data points). This performance is more than acceptable given 412 

the fact that the surface reflectances for AVHRR are from a database at a 30-day temporal 413 

resolution rather than instantaneous values (although interpolated between nodes). The outliers 414 

(with low number density) are largely due to this temporal limitation of the database approach. 415 

These outliers are from a few locations at which the database method is less optimal, and thus 416 

would not significantly affect a large-scale view of the aerosol product. For instance, AERONET 417 

sites located near croplands, such as Bondville (Illinois, U.S.) and Egbert (Ontario, Canada), and 418 

near complex environment, such as Billerica (near Boston, U.S.) contribute to a large portion of 419 
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the outliers. It should be noted that in the Level 2 aerosol data product the effect of the outliers, 420 

especially due to spatial inhomogeneity, would be mitigated by the spatial aggregation (2 × 2 421 

pixels), as Figure 9 compares data at different spatial resolutions (0.1° for the surface database, 422 

L1B resolution for the benchmark). 423 

The application of our NDVI-based land algorithm is limited to certain surface and 424 

viewing geometry conditions, due to the use of single 630 nm band in retrieving AOD. Through 425 

extensive investigation on retrieval sensitivities and error characteristics of AOD, we have 426 

chosen the following procedures to select retrieval pixels for this approach: 427 

i) 630 nm surface reflectance is lower than 0.15, and International Geosphere-Biosphere 428 

Programme (IGBP) land cover type (Friedl et al., 2010) is not classified as ‘open shrublands’, 429 

‘grasslands’, or ‘croplands’. Because AOD retrieval sensitivity decreases with increasing surface 430 

reflectance, data are excluded when surface reflectance is too high. 431 

ii) If IGBP land cover type falls into the three categories in i), air mass factor needs to be higher 432 

than 2.5 in addition to the surface reflectance criterion for the pixel to be eligible for retrieval. It 433 

is found that AOD retrieved over these three land cover types are less accurate compared to that 434 

over other land cover types, mainly due to higher surface reflectance values (although less than 435 

0.15) and higher uncertainty of estimating surface reflectance over these regions. This requires 436 

the additional filter to only include data with high signal-to-noise ratio, which reduces artificial 437 

hotspots resulting from errors in calculated surface reflectance combined with weak aerosol 438 

signal. 439 

2.1.2 AOD Determination and Extrapolation to 550 nm 440 



20 

 

After the surface reflectance is determined based upon surface types as described above, 441 

a maximum likelihood method is used with pre-calculated LUTs to match the appropriate values 442 

of AOD to the measured reflectances from AVHRR, based on these surface reflectances and the 443 

aerosol optical models as used for other satellite sensors (Hsu et al., 2004). This is the same basic 444 

approach as used for SeaWiFS/MODIS Deep Blue, except for the different available spectral 445 

bands. Note that the 630 nm band is used for the inversion, and thus the retrieved AOD is also at 446 

630 nm. For details of the algorithm see Hsu et al. (2004, 2013). 447 

Since 550 nm AOD is the primary product of the Deep Blue algorithm for other satellite 448 

sensors, and is widely used within the aerosol community, the 630 nm AOD is extrapolated to 449 

550 nm using an AE climatology. This saves the data user from having to perform such an 450 

extrapolation themselves.  The climatology is created from the full Level 2 AERONET record 451 

available at the present time. Specifically, multi-year monthly median 440-870 nm AE values at 452 

each AERONET site are calculated based on daily median values, when the numbers of data 453 

points are higher than 5 for both the daily and monthly calculations. The monthly climatology is 454 

then expanded globally to a 1° × 1° grid using exponentially weighted means of the medians 455 

from the AERONET sites. For the weighting factor, e-folding lengths of 500 km for longitude 456 

and 250 km for latitude are used (to account for prevailing zonal winds over the globe). It was 457 

found that the background AOD from AERONET can be accurately interpolated regardless of 458 

the e-folding length in the range of 100-1000 km (Zhang et al., 2016), although the error can 459 

increase over areas where AERONET sites are sparsely distributed. It should be noted that the 460 

single channel retrieval of AVHRR leads us to using a seasonal aerosol optical model in each 461 

geographic region rather than retrieving it in each pixel, such that extrapolation of AOD using 462 

the optical models is not optimal. 463 
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2.2 Ocean Algorithm (SOAR) 464 

The over-water AOD retrieval is based on the same SOAR algorithm applied previously 465 

to SeaWiFS and VIIRS observations, simplified to account for the more limited measurement 466 

capabilities of the AVHRR sensors. Full details of SOAR are provided by Sayer et al. (2012a, 467 

2017a), and a summary of key points is below. 468 

 469 

2.2.1 Selection of Suitable Pixels 470 

Pixels contaminated by Sun-glint, clouds, or suspected of excessively turbid water are 471 

excluded from processing; Sun-glint masking is as described in Sayer et al. (2012a) but cloud 472 

and turbid water masks are different due to the different spectral bands available to AVHRR. 473 

Pixels are identified as cloudy if they are either bright (band 1 TOA reflectance > 0.08), cold (12 474 

µm BT < 270 K), or heterogeneous (3 × 3 pixel standard deviation of TOA reflectance >0.005 475 

for either band 1 or band 2). To minimize contamination from undetected cloud or 3D effects, 476 

pixels adjacent to a pixel identified as cloudy are also excluded. These thresholds have been 477 

determined empirically and tested to ensure both few false negatives (i.e., undetected cloud) and 478 

positives (i.e., over-screening of aerosol plumes). 479 

Pixels are identified as persistently turbid (or potentially land-contaminated) and 480 

excluded if the seasonal Deep Blue surface reflectance database value at 630 nm is above 0.06 481 

(Section 2.1.1.1). This typically removes 0-2 pixels on some coastlines, except for areas of 482 

larger-scale turbidity such as the Bay of Bengal or mouth of the Amazon River. If such pixels are 483 

not excluded then the effect is a positive bias in retrieved AOD, as AVHRR unfortunately has 484 

insufficient information content to easily distinguish between turbid water and elevated aerosol 485 

loading. 486 
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2.2.2 Pixel-Level Retrieval 487 

As with prior applications of SOAR (Sayer et al., 2012a, 2017a), individual pixels are 488 

used to retrieve aerosol properties in a multispectral weighted least-squares fit of observed TOA 489 

reflectances against pre-computed values stored in LUTs. The SeaWiFS and VIIRS applications 490 

simultaneously retrieved the AOD at 550 nm and fine mode fraction (FMF) as well as the best-fit 491 

aerosol optical model (which consists of bimodal size distribution parameters and spectral 492 

complex refractive index), from which other parameters like AE can be derived in a self-493 

consistent manner. As only two measurements are available for AVHRR, only the AOD and 494 

best-fit aerosol optical model are retrieved and the FMF is fixed for each aerosol optical model. 495 

The LUT is generated with the VLIDORT radiative transfer code (Spurr, 2006) and aerosol 496 

model information is provided in Table 2 (including references for optical model parameters). 497 

Use of these models keeps a level of consistency with other applications of SOAR: other over-498 

ocean AOD retrievals for AVHRR typically retrieve AOD and AE but assume the same aerosol 499 

size distribution/refractive index globally (e.g., Mishchenko et al., 1999; Ignatov and Stowe, 500 

2002), which is a slightly different approach to aerosol ‘typing’. To allow some more flexibility 501 

in distinguishing low-AOD conditions between open oceans and continental outflow regions, 502 

where FMF may be different (e.g., Smirnov et al., 2011), there are two maritime models with 503 

different FMF permitted (but otherwise the same AOD range and modal optical properties). 504 

Different LUTs are calculated for each AVHRR sensor, as their central wavelengths and 505 

bandwidths are different (e.g., Tanré et al., 1992). 506 

The ocean surface reflectance model used is described in Sayer et al. (2017a), which is an 507 

updated version of that from Sayer et al. (2012a), incorporating more recent measurements of 508 

optical characteristics of water and pigments. A log10 chlorophyll concentration (mg m
-3

) of -0.5 509 
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is assumed, although the surface reflectance over AVHRR bands is only weakly dependent on 510 

this over the range of typical oceanic chlorophyll concentrations. As such this approximation 511 

should add negligible (<0.01) additional uncertainty in retrieved AOD. 512 

The retrieval minimizes the sum of the squared deviation between measurements and 513 

LUT values, weighted by assumptions of the uncertainty in the AVHRR bands (from calibration, 514 

gas correction, and the forward model), providing essentially a χ
2
 statistic referred to as the 515 

retrieval cost. At present these relative uncertainties are assumed to be 3% for band 1 and 20% 516 

for band 2; this deweighting of band 2 is to account for the greater calibration and gas absorption 517 

uncertainties with this band. As a result the AOD is mostly determined by band 1, while band 2 518 

provides some constraint on best-fit aerosol optical model. In version 1 of the AVHRR data set, 519 

the TOA reflectances have also been scaled for NOAA-14 (by 0.95 and 0.89 for bands 1 and 2) 520 

and NOAA-18 (by 0.97 and 0.95) based on validation against AERONET and examination of 521 

maps of aerosol model choices. This is an empirical step taken as a first-pass to decrease 522 

potential systematic uncertainties related to the sensor calibration used and trace gas absorption, 523 

which will hopefully be improved upon for future versions once the different available multi-524 

sensor AVHRR calibrations have been evaluated for aerosol processing. Note that the NASA 525 

NDVI products which also use the Vermote and Kaufman (1995) calibration methodology also 526 

apply further empirical corrections, although at the NDVI stage rather than the level 1 stage 527 

(Tucker et al 2005, and references therein), so such adjustments are not unprecedented. 528 

2.3 Aggregation to 2×2 Cell Resolution and Quality Flags 529 

Over both land and ocean, after the retrieval, the AOD and other parameters are 530 

aggregated to 2×2 ‘cell’ resolution, which is the output resolution for the Level 2 product, and 531 
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corresponds to approximately 8.8 × 8.8 km
2
 horizontal pixel size at the sub-satellite point 532 

(although see prior discussion on LAC/GAC sampling). The median of all retrieved quantities is 533 

taken (to reduce sensitivity to, e.g., any residual cloud contamination) from the up to 4 available 534 

pixels. Over ocean, the aerosol model with the lowest cell-average cost is chosen as the ‘best’ 535 

solution, and this is reported in the Level 2 product. The main retrieved quantity is the AOD at 536 

550 nm and AVHRR band 1; over ocean, related information derived from the aerosol optical 537 

model (AOD at AVHRR band 2, FMF, and AE) are also provided.  538 

Following the convention used in MODIS/SeaWiFS Deep Blue products, the quality 539 

assurance (QA) flags in AVHRR Level 2 data also have 4 different levels where QA=0 indicates 540 

no retrieval, QA=1 indicates a possible problem with retrieval, and 2/3 indicate moderate and 541 

high quality (i.e., no reason to suspect a problem) respectively. Note that over ocean there is no 542 

QA=2 category. Over ocean, a cell is assigned QA=3 if the retrieval cost is less than 5 (i.e. a 543 

good fit between measurements and forward-modeled reflectances was obtained), at least 2 (out 544 

of 4) pixels within the cell were used in the retrieval, and the AOD standard deviation in the cell 545 

is less than 1. In practice the requirement for at least 2 out of 4 pixels is the most restrictive. Over 546 

land, the AOD standard deviation requirement is stricter (0.35 and 0.20 for QA=2 and 3, 547 

respectively), due to the greater difficulty in AOD retrieval over land, and the pixel count 548 

requirement is the same as over ocean. Since potentially there still could be cloud contamination 549 

in the QA=1 cells, only QA=2 or 3 cells are propagated into Level 3 aggregated data, and in 550 

general only QA=2 or 3 retrievals should be used for most applications.   551 

3. Results and Discussions 552 
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Figure 10 illustrates one of the examples of our AVHRR AOD products and its 553 

comparison with MODIS Aqua over South America as well as the surrounding water on 554 

September 7, 2006. For MODIS, over-land data from the Deep Blue algorithm are used (Hsu et 555 

al., 2013; Sayer et al., 2013). Over water, the Dark Target MODIS ocean retrieval product (Tanré 556 

et al., 1997; Levy et al., 2013) is used, as SOAR has not yet been applied to MODIS. Our newly 557 

developed AVHRR algorithm, shown in Figure 10 (c), extends the spatial coverage of current 558 

AVHRR AOD products, which are only available over water, to the land surface types. The 559 

AVHRR data shown here are based upon measurements from NOAA-18 with a local solar 560 

equator crossing time of ~2:00 pm, which is slightly later than the 1:30 pm equator crossing time 561 

for Aqua. Nevertheless, the areas of high AOD in our AVHRR image correspond well to the 562 

smoke plumes visible in the MODIS true-color image, capturing the heavy smoke transported 563 

southward. We also compare the AOD values at 550 nm derived from our AVHRR data with 564 

those based upon the MODIS/Aqua aerosol retrievals for the corresponding day, as shown in 565 

Figure 10 (b). The results indicate that the AOD values from these two sensors are quite 566 

comparable, despite their differences in observation time.  567 

We also examined algorithm results over Asia, which often exhibits the most complex 568 

aerosol conditions observed, with a mixture of dust and fine mode pollution particles. One such 569 

example, shown in Figure 11, is for April 16, 2006. On this day, a transported dust plume 570 

observed over western and central China around 40º N, 80º–114º E occurred as a result of a 571 

springtime dust outbreak event over the Taklamakan Desert as well as Inner Mongolia. While 572 

this plume was well captured by our AVHRR data, the spatial coverage is sparser over arid 573 

regions around 40º N, 80º–105º E compared to the MODIS data. This is due to the use of air 574 

mass filter applied to the AVHRR retrievals over arid areas. East of this dust plume, the region 575 
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was covered by widespread fine mode pollution extending all the way to the East China Sea and 576 

the Yellow Sea; the elevated AVHRR AOD values over this area reflect this.  577 

In addition to the daily data, we also compare the AVHRR and MODIS products on the 578 

seasonal basis. Figure 12 provides the maps of seasonal averaged AOD from both AVHRR 579 

(NOAA-18) and MODIS (Aqua). These composites were created by taking daily Level 3 580 

products, and then averaging these first to monthly, and then monthly to seasonal, time steps. To 581 

stop poorly-sampled grid cells from introducing potentially significant sampling error into the 582 

comparison, a daily grid cell was considered valid for an instrument if it contained at least 5 583 

retrievals passing QA checks, and a grid cell was considered valid on a monthly basis if it 584 

contained at least 3 valid days. These thresholds are somewhat subjective but, particularly for 585 

cloudy regions, provide a reasonable balance between data coverage and sampling representivity. 586 

As shown in Figure 12, both AVHRR and MODIS reproduce the same major spatial and 587 

seasonal variations in aerosol loading. For example, there were intense wild fires over Siberia, in 588 

the summer of 2006, producing heavy smoke plumes all the way into the Arctic Ocean, as seen 589 

in the retrieved June-July-August AOD maps from both sensors. The patterns of elevated aerosol 590 

loading due to anthropogenic air pollution in East Asia and South Asia are also clear in both 591 

sensors throughout the year. The seasonal north-south movement of the Saharan dust transport 592 

displayed in the AVHRR maps is also in agreement with that in the MODIS maps. More detailed 593 

comparisons with the MODIS aerosol products are provided in the companion paper, Sayer et 594 

al.( 2017b). 595 

Seasonal means can be influenced by sampling frequency of the given dataset. AVHRR 596 

and MODIS sensors have (to a first order) similar swath widths and similar Level 2 pixel sizes, 597 
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so it would be expected that sampling frequencies would be similar. Figure 13 confirms that on a 598 

general basis this is indeed the case, and also reinforces the extent to which cloud cover, 599 

snow/ice, and polar night can limit coverage from all instruments of these types (many grid cells 600 

have fewer than 25% of days providing data within a season). Overall AVHRR coverage, while 601 

sharing similarities to that of MODIS, is often around 10% less frequent. This is due to the more 602 

limited information content of the sensor, meaning that cloud screening and QA checks are 603 

stricter in AVHRR to minimize the chances of poor-quality retrievals propagating into the data 604 

product. Coverage in the Sahara and Arabian Peninsula is also limited or absent in AVHRR, as 605 

this surface is too bright in most cases to perform an AOD retrieval from this type of sensor from 606 

the available bands (Section 2.1.1). In AVHRR coverage-sparse regions such as this, sampling 607 

differences are also therefore likely to be playing a role in differences in the seasonal AOD 608 

observed by the two sensors. 609 

Figure 14 shows a comparison of multiannual mean AOD at 550 nm from our NOAA18 610 

AVHRR, SeaWiFS (version 4), and MODIS Aqua (Collection 6) aerosol products for their 611 

common overlap period (2006-2010). Note the MODIS ocean data are from the standard Dark 612 

Target group ocean product (Levy et al., 2013); otherwise, all land data shown are Deep Blue, 613 

and ocean data are SOAR. Similar patterns in the mean AOD are seen in all data sets. MODIS 614 

has the highest coverage; AVHRR has more gaps due to the sensor’s limitations at discerning the 615 

aerosol signal over the brightest desert surfaces, as discussed, as well as the more conservative 616 

cloud screening (due to more limited spectral channels) reducing coverage over tropical forests. 617 

SeaWiFs has similar cloud-screening limitations due to a lack of any thermal IR bands. SeaWiFS 618 

also, at this point, represents the oldest of the three Deep Blue algorithm versions and has some 619 

additional coverage gaps because of this (Sayer et al. 2012b; Hsu et al. 2013). Some differences 620 
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in AOD magnitudes result, as in the seasonal comparisons above, from these sampling 621 

differences. 622 

Over water, the AVHRR and SeaWiFS data are quite comparable. Validation exercises 623 

have shown that both have near-zero biases in open-ocean conditions, and slight negative biases 624 

in high-AOD conditions (Sayer et al. 2012a, 2017b). Over ocean MODIS shows the same spatial 625 

patterns but with a generally higher AOD. As noted, this is not from the SOAR algorithm. The 626 

standard MODIS Collection 6 over-ocean AOD product is known to have a positive bias in low-627 

AOD conditions (of order 0.01-0.02; Sayer et al. 2012d, Levy et al. 2013), and a more variable 628 

positive bias in dust-laden conditions due to the lack of a non-spherical dust optical model (e.g. 629 

Mishchenko et al., 1997, Levy et al., 2003, Banks et al., 2017, Lee et al., 2017). Therefore, these 630 

patterns are broadly consistent with the known characteristics of each data set. Additional 631 

comparisons are provided in the comparison data set evaluation paper, Sayer et al. (2017b). 632 

4. Validation against AERONET AOD 633 

Figure 15 shows scatter density plots providing a global summary of the validation of 634 

AVHRR retrievals based upon 6 years (2006-2011) of NOAA-18 data and 5 years (1995-1999) 635 

of NOAA-14 data over land and ocean. For NOAA-18 a total of 40 sites contributed to over-636 

ocean data, and 427 over land data; for NOAA-14 the numbers are 20 and 123 respectively. 637 

Because there are fewer AERONET sites before the year 2000, fewer matchup data points are 638 

found for NOAA-14 compared to those for NOAA-18. Full details of the validation are provided 639 

by Sayer et al. (2017b), but a summary is given here. AVHRR and AERONET data are 640 

compared using the standard technique of averaging satellite data within 25 km of the 641 

AERONET site and AERONET data within 30 minutes of the satellite overpass, to decrease the 642 
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effect of spatiotemporal sampling differences. The AERONET direct-Sun Version 2 Level 2 643 

(cloud-screened and quality assured; Smirnov et al., 2000) data products are used. This 644 

comparison shows results for AVHRR band 1 AOD (near 630 nm). AERONET does not 645 

measure this wavelength directly, so the bands are interpolated spectrally, which adds negligible 646 

additional uncertainty to the approximate 0.01 AOD uncertainty of the AERONET direct-Sun 647 

measurement.  648 

For both NOAA-18 and -14 AVHRR data, the correlation coefficients are high in all 649 

cases, and the median biases fairly small. The statistic f indicates the fraction of points matching 650 

AERONET within the expected error (EE), an envelope of ±(0.03+15%) over ocean and 651 

±(0.05+25%) over land for this first version, on global average  for  both  surface  types. While 652 

the exact sensitivity to various assumptions is quite dependent on the context of each individual 653 

retrieval (i.e.  aerosol loading and type, surface  cover  type,  solar/view geometry, etc), these  EE 654 

envelopes provide a guideline  first-order expectation of  retrieval performance. They are based 655 

on prior applications of the Deep Blue and SOAR algorithms, and the known limitations of the 656 

AVHRR sensors (cf. Rao et al., 1989; Tanré et al., 1992; Mishchenko et al., 1999, Hsu et al. 657 

2004, 2013; Sayer et al. 2012a,b, 2017b). Specifically, proportion of retrievals within the 658 

expected error calculated separately for regions over ocean, vegetated land only and entire land 659 

are 73.9%, 77.0%, and 73.5% (NOAA-18) and 64.3%, 79.4% and 73.9% (NOAA-14), 660 

respectively. Uncertainties over ocean are smaller than those over land, due in large part to the 661 

darker surface signal. Over land, performance is better when the data are subset to show only 662 

vegetated matchups, for the same reason. These results demonstrate the applicability of the Deep 663 

Blue and SOAR algorithms to AVHRR measurements. 664 

5. Conclusion 665 
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To understand the effects of aerosols on climate and human health, satellite observations 666 

are crucial in providing continuous temporal and spatial sampling of aerosol properties from 667 

source to sink regions for such studies. With the advent of the EOS-era sensors in the late 1990s, 668 

an accurate long-term aerosol dataset from these well-calibrated satellite measurements became 669 

possible. However, for many climate studies the EOS data records are not always of sufficient 670 

length to adequately address the question of long-term aerosol changes on regional/global scales. 671 

Therefore, results using earlier satellite sensors such as AVHRR, which provide nearly 40 years 672 

of measurements, are highly desirable in order to extend the dataset for use in these studies. This 673 

earlier time period (from 1981 to 2000) before the launch of EOS satellites is particularly 674 

important for understanding changes in the levels of aerosol loading over Asia, where a large 675 

fraction of global economic growth over the past several decades has occurred.  676 

In this paper, we demonstrated a new approach to quantitatively retrieve, for the first 677 

time, this much needed aerosol information from AVHRR over land and ocean on a global scale. 678 

Our approach is an extension of the SeaWiFS/MODIS Deep Blue and SOAR aerosol algorithms. 679 

Over land, we merge the use of NDVI with the framework of the minimal reflectance method to 680 

account for the effects of changing vegetation in surface reflectance. Over ocean, a simplified 681 

version of SOAR is employed for aerosol retrieval. Using these algorithms, our results show that 682 

daily, seasonal, and annual distributions of AOD from AVHRR are in reasonable agreement with 683 

those from MODIS, despite the limitations on its information content. The cloud screening 684 

scheme for AVHRR is also shown to be robust in distinguishing heavy aerosol plumes from 685 

clouds, based upon the results of intercomparing daily AOD data from AVHRR and MODIS. 686 

Extensive comparisons have also been performed between the AOD values retrieved 687 

from the AVHRR instruments on NOAA-14 and -18 and the AERONET data. Using the 688 
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calibration of Vermote and Kaufman (1995), our AVHRR AOD values show good agreement 689 

with the AERONET data over land and ocean for both the NOAA-14 (1995-1999) and NOAA-690 

18 (2006-2011) time periods. Based upon these comparisons, the expected error is estimated to 691 

be ±(0.03+15%) over ocean and ±(0.05+25%) over land for this first version of AVHRR aerosol 692 

products. Detailed evaluations of the AVHRR products are included in a companion paper 693 

(Sayer et al., 2017b). For the next step, we plan to process the AVHRR time series by employing 694 

different calibrations (e.g., Heidinger et al., 2002; Wu et al., 2010; Bhatt et al., 2016) to examine 695 

the sensor-to-sensor consistency using the multiple overlapping years of data in order to ensure 696 

the long-term stability of the aerosol data records. 697 

Multiple years of the AVHRR Deep Blue aerosol products from NOAA-11, -14 and -18 698 

are now available via the Deep Blue project web site (https://deepblue.gsfc.nasa.gov). This 699 

dataset will eventually be able to provide nearly 40 years of aerosol data records from AVHRR 700 

not only over ocean, but also over the entire cloud-free, snow/ice-free land area, except for very 701 

bright desert regions such as the Sahara and arid regions in the Arabian Peninsula. When 702 

combined with data from EOS-era sensors such as SeaWiFS and MODIS, our AVHRR record 703 

will provide a critical piece in the construction of a consistent long-term aerosol data record for 704 

deriving aerosol trends on both global and regional scales. 705 
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 940 

Table 1.  AVHRR channel names, approximate ranges of peak spectral response, and shorthand 941 

for central wavelengths indicated in this study. Note channel 3A is only present on the 942 

AVHRR/3 sensors (NOAA15 onwards). 943 

 944 

Number Range of peak spectral response (μm) Shorthand 

1 0.58-0.68 630 nm 

2 0.72-1.0 850 nm 

3a 1.58-1.64 1.6 μm 

3b 3.55-3.93 3.7 μm 

4 10.30-11.30 11 μm 

5 11.50-12.50 12 μm 

 945 

 946 

 947 

Table 2.  Aerosol optical model, AOD ranges, FMF values, size distribution parameters, 948 

refractive indices, and references for the AVHRR application of SOAR. For each model fine 949 

mode parameters are on the first line and coarse the second. 950 

Model 

Referenc

e 

FM

F 

AOD 

range 

Modal 

radius, 

μm Spread 

Refractive index  

(550, 630, 840 nm) 

Dust 

Lee et al 

(2017) 0.1 0.15-5.0 0.19 0.44 

1.430-0.001i, 1.430-0.001i, 

1.430-0.001i 

 

    

2.0 0.51 

1.543-0.0012i, 1.543-

0.0009i, 1.521-0.0006i 

 Fine-

dominated 

Sayer et al 

(2012a) 0.8 0.2-3.5 0.19 0.44 

1.430-0.0075i, 1.430-0.0075i, 

1.430-0.0075i 

    

2.75 0.65 1.363-0i, 1.363-0i, 1.363-0i 

Marine, 1 

Sayer et al 

(2012a,c) 0.5 

0.001-

0.2 0.157 0.5 

1.414-0.0021i, 1.413-0.0025i, 

1.408-0.0035i 

    

2.59 0.72 1.361-0i, 1.358-0i, 1.357-0i 

Marine, 2 

Sayer et al 

(2012a,c) 0.7 

0.001-

0.2 0.157 0.5 

1.414-0.0021i, 1.413-0.0025i, 

1.408-0.0035i 

        2.59 0.72 1.361-0i, 1.358-0i, 1.357-0i 

 951 
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 952 

 953 

 954 

 955 

Figure 1. Solar band spectral response functions for AVHRR/2 on NOAA11 (black), NOAA14 (red), and 956 

AVHRR/3 on NOAA18 (blue). Spectral response functions are available from 957 

https://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/AVHRR/spec_resp_func/index.html. 958 

 959 

 960 

 961 

 962 

 963 

https://www.star.nesdis.noaa.gov/smcd/spb/fwu/homepage/AVHRR/spec_resp_func/index.html
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 964 

Figure 2. Schematic diagram of cloud screening scheme used in the AVHHR Deep Blue over-land 965 

algorithm. Acronyms indicate brightness temperatures (BT), BT differences (BTD), and reflectances (R) 966 

at channel wavelengths denoted. Subscripts max and min refer to the maximum and minimum values 967 

within the 3x3 pixel area. 968 

 969 

 970 

 971 

 972 
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 973 

Figure 3. Flowchart of the AVHRR Deep Blue land surface reflectance determination scheme. 974 

 975 

 976 

 977 
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 978 

Figure 4. Seasonal maps of NOAA-18 AVHRR surface database showing reflectance (%) at band 1 (630 979 

nm) for (a) December-February, (b) March-May, (c) June-August, and (d) September-November. Grid 980 

cells without a valid value are indicated in white. 981 

  982 
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 983 

Figure 5. Land surface types showing where each surface reflectance approach is applied. The seasonal 984 

surface reflectance database with scattering angle dependence is used for urban, dry, or transitional land 985 

surfaces (orange), and 30-day maximum NDVI database is used for vegetated surfaces (green).  986 

  987 
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 988 

Figure 6. (a) AVHRR band 1 (630 nm) Rayleigh-corrected TOA reflectance, and (b) Rayleigh-corrected 989 

NDVI, and (c) MODIS Aqua Deep Blue AOD at 550 nm over part of the U.S. on 19 September 2006.  990 

  991 
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 992 

Figure 7. Maximum Rayleigh-corrected NDVI in four 30-day windows in 2006. Day of year windows for 993 

each plot are (a) 1-30, (b) 91-120, (c) 181-210, and (d) 271-300, representative of boreal winter, spring, 994 

summer, and fall respectively. 995 

 996 
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 997 

Figure 8. Median and central 68% interval of the difference between Rayleigh-corrected NDVI (NDVIRc) 998 

and atmosphere-corrected NDVI (NDVIAc) as a function of (a) 550 nm AOD, (b) NDVIRc, (c) air mass 999 

parameter, and (d) scattering angle for the period from 2006 to 2011 before (red) and after (blue) the 1000 

correction of aerosol signals in NDVIRc. Gray dots show individual data points used for the uncorrected 1001 

data. All North American AERONET sites available for the test period are used for this analysis.  1002 

 1003 
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 1004 

Figure 9. Scatter density plots between benchmark surface reflectance (atmospherically-corrected TOA 1005 

reflectance) and estimated surface reflectance from the maximum NDVI database over North America in 1006 

each season from 2006 to 2011. Statistics shown are the number of data points (N), Pearson coefficient 1007 

(R), root-mean-square error (RMSE), and mean bias (MB). 1008 
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 1010 

Figure 10. (a) MODIS Aqua true-color image, (b) MODIS AOD at 550 nm from Collection 6, and (c) the 1011 

new AVHRR AOD at the same wavelength from NOAA18, for a smoke event over South America on 7 1012 

September 2006.  1013 

 1014 
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 1015 

Figure 11. As Figure 10, except for a heavy dust/pollution mixture event over Asia on 16 April 2006. 1016 

 1017 

 1018 

 1019 

 1020 

 1021 
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 1022 

 1023 

Figure 12. Seasonal composites of NOAA-18 AVHRR (left) and MODIS Aqua (right) AOD at 1024 

550 nm for the year 2006. Grid cells without sufficient data (see text) are shaded in grey. 1025 
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 1027 

 1028 

Figure 13. As Figure 12, except for showing the percentage of days within each season 1029 

containing sufficient AOD data for the Level 3 grid cells to be populated (see text). 1030 

 1031 

 1032 

 1033 

 1034 

 1035 
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 1036 

Figure 14. Multiannual mean composites of AOD at 550 nm, for (a) NOAA18 AVHRR, (b) 1037 

SeaWiFS, and (c) MODIS Aqua, for their common overlap period (2006-2010). Grid cells with 1038 

fewer than 24 months during this period containing valid monthly mean data are shaded in grey. 1039 

 1040 
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 1041 

Figure 15. Scatter density histograms between AERONET and AVHRR AOD at band 1. Data 1042 

are shown separately for (a, c, e) NOAA18 and (b, d, f) NOAA14, for (a, b) SOAR ocean 1043 

retrievals, (c, d) Deep Blue land retrievals for vegetated scenes, and (e, f) all Deep Blue land 1044 

retrievals. Dashed lines indicate the expected error (EE) envelopes of ±(0.03+15%) over water 1045 

and ±(0.05+25%) over land, respectively. Statistics indicate the correlation coefficient (R), 1046 
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median (AVHRR-AERONET) bias, root mean square (RMS) error, data count (n), and fraction 1047 

of points matching within the EE (f). 1048 
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